
Algorithmic schemes for the multiple-sets split equality problem

Nguyen Thi Quynh Anh1,∗, Nguyen Thu Ha 1

1The People’s Police University of Technology and Logistics

ARTICAL INFO ABSTRACT

Received:

Revised:

Published:

In this paper, for solving the multiple-sets split
equality problem (MSSEP), we give a general
approach to construct iterative methods. We
present an weakly convergent string-averaging
algorithmic scheme, that contain the cyclic and
simultaneous iterative methods as particular
cases. In our methods, we do not need to have
any information on the operator norms. We
also give numerical examples for illustrating
two main methods.
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TÓM TẮT
Trong bài báo này, để giải bài toán trùng tách
nhiều tập, chúng tôi đưa ra một cách tiếp cận
tổng quát để xây dựng phương pháp lặp. Chúng
tôi giới thiệu một lược đồ thuật toán xâu-trung
bình hội tụ yếu, chứa phương pháp lặp xoay vòng
và phương pháp đồng thời như các trường hợp
riêng. Ở đây chúng tôi không yêu cầu biết chuẩn
của toán tử. Chúng tôi cũng đưa ra ví dụ số minh
họa cho hai phương pháp cơ bản.

1. Introduction

Let H1, H2 and H3 be real Hilbert spaces. Let J1 and J2 be two index sets with N
and M elements. Let {Ci}i∈J1 and {Qj}j∈J2 be two families of closed convex subsets
in H1 and H2, respectively, and let A : H1 → H3 and B : H2 → H3 be two bounded
linear mappings with the standard norms ‖A‖ and ‖B‖, respectively. We denote by I,
〈·, ·〉 and ‖ · ‖ the the identity mapping, an inner product and a norm for any Hilbert
space.

The multiple-sets split equality problem is to find a point z∗ = [x∗, y∗] with the
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property:

x∗ ∈ C := ∩i∈J1Ci and y∗ ∈ Q := ∩j∈J2Qj such that Ax∗ = By∗. (1.1)

Denote by Γ the set of solutions for (1.1), assumed to be non-empty in this paper.
Clearly, when H2 = H3 and B = I, the MSSEP reduces to the multiple-sets split

feasibility problem (MSSFP), that was first introduced by Censor and Elfving [1] for
modeling inverse problems that arise from phase retrievals and in image reconstruc-
tion [2]. Recently, the MSSFP can also be used to model the intensity-modulated
radiation therapy [3,4] and references therein.

In the case that N = M = 1, the MSSEP reduces to the split equality problem
(SEP), that is to find points x∗ and y∗ such that

x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗. (1.2)

Problem (1.2) was introduced and studied by Byrne and Moudafi [7] in finite-dimensional
spaces. This is actually an optimization problem with weak coupling in the constraint
and its interest covers many situations, for instance, in domain decomposition for
PDEs [8] and game theory [9]. In order to solve problem (1.2), they introduced the
weakly convergent CQ-like method, z1 = [x1, y1] ∈ C ×Q and

xk+1 = PC(xk − γkA∗(Axk −Byk)),
yk+1 = PQ(xk + γkB

∗(Axk −Byk)), ∀k ≥ 1,
(1.3)

where A∗ and B∗ are the adjonts of A and B, respectively, and γk = γ is chosen in
the interval (a, b) ⊂ (0,min{1/‖A‖2, 1/‖B‖2}) for all k ≥ 1. So, the choice value γ
depends on the norms ‖A‖ and ‖B‖, that are not easy to be calculated in practice.
To overcome the difficulty, Dong et al. [8] and Vuong et al. [9] indicated that γk can
be chosen by

γk = ρkf(xk, yk)
ak

with ρk ∈ (0, 4), (1.4)

where f(x, y) = ‖Ax−By‖2/2 and ak = ‖A∗(Axk−Byk)‖2+‖B∗(Axk−Byk)‖2. Next,
Chuang and Du [10] proved weak convergence for method (1.3) when γk is chosen in
the interval (0, 2/(‖A‖2 + ‖B‖2)) such that lim infk→∞ γk(2− γk(‖A‖2 + ‖B‖2)) > 0
with an additional conditions on (xk, yk). Recently, Wang [11] gave a new way to
select the parameter γk. The iterative regularization method and several projection
methods have been investigated in [12-15].

Clearly, in the Hilbert space H = H1 × H2 with an inner product and a norm
denoted and defined by 〈z1, z2〉 = 〈x1, x2〉 + 〈y1, y2〉 and ‖z‖ = (‖x‖2 + ‖y‖2)1/2,
respectively, where z = [x, y] and zi = 〈xi, yi〉 with x, xi ∈ H1 and y, yi ∈ H2 for
i = 1, 2, method (1.3) can be re-written in the compact form,

zk+1 = PS(I − γG∗G)zk, z1 ∈ H, (1.5)

where G = [A,−B]T : H → H and S = C ×Q. Further, Li and Chen [16] extended
(1.5) to MSSEP (1.1) with N > M by a sequential iterative method,

zk+1 = PSm(k)(I − γG∗G)zk, (1.6)
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where m(k) = k mod (N + 1) with Qj = H2, for M < j ≤ N , is some additional
set and Si = Ci × Qi for i = 1, · · · , N , and a simultaneous one. They proposed also
several iterative methods of Krasnoselskii-Mann’s type. All these methods converge
weakly to a point in Γ. Further, Zhao and Shi [17] introduced a new extragradient-
type method for the MSSEP. Meantime, Tian et al. [18] proposed a new iterative
method, in which the iterative step size is split self-adaptive without needing to have
any information about ‖A‖ and ‖B‖.

When H1 = H2 = H3 and A = B = I, problem (1.1) reduces to the convex
feasibility problem, that is to find a point p∗ ∈ ∩ni=1Ci where n is a positive integer
and Ci is a closed convex set in a Hilbert space H for all 1 ≤ i ≤ n. To solve the
convex feasibility problem, Censor et al [19] introduced a string-averaging algorithmic
scheme, that projects a point sequentially along several independent strings of con-
straints. Projecting along each string is sequential, but the strings are independent
and projecting along them can be performed in parallel. In final, the end-points of
strings of sequential projections onto the constraints are averaged.

The purpose of this paper is to use the results listed above to design a general
scheme for iterative methods, solving (1.1). The rest of this paper is organized as
follows. In Section 2, we list some related facts, that will be used in the proof of
our results. In Section 3, we propose a string-averaging scheme to solve (1.1) and
show its weak convergence. Finally, in Section 4, we give numerical experiments for
illustrating our main results.

2. Preliminaries

In any real Hilbert space H, we have the following inequality,

‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉, ∀u, v ∈ H.

Definitions 2.1 A mapping T from a subset Ω of H into H is called:
(i) nonexpansive, if ‖Tu− Tv‖ ≤ ‖u− v‖ for all u, v ∈ Ω;
(ii) contractive, if ‖Tu− Tv‖ ≤ ã‖u− v‖ for a fixed ã ∈ [0, 1) and for all u, v ∈ Ω;
(iii) γ-inverse strongly monotone, if γ‖Tu−Tv‖2 ≤ 〈Tu−Tv, u− v〉 for all u, v ∈ Ω,
where γ is a positive number;
(iv) firmly nonexpansive, if there holds (iii) with γ = 1.
(v) η-strongly monotone and γ-strictly pseudocontractive mapping, if there hold,
respectively,

〈Tx1 − Tx2, x1 − x2〉 ≥ η‖x1 − x2‖2 and
〈Tx1 − Tx2, x1 − x2〉 ≤ ‖x1 − x2‖2 − γ‖(I − T )x1 − (I − T )x2‖2

for all x1, x2 ∈ Ω, where η and γ are some positive real numbers.
For a closed convex subset Ω of H, there exists a mapping PΩ : H onto Ω such that
PΩ(u) = infv∈Ω ‖v−u‖ for each u ∈ H. The mapping PΩ is called the metric projection
onto Ω. We know that PΩ is firmly nonexpansive (hence, nonexpansive); I−PΩ is also
firmly nonexpansive; 〈PΩu−z, u−PΩu〉 ≥ 0, u ∈ H, z ∈ Ω; and for any u ∈ H, z ∈ Ω
we have that ‖u − PΩu‖2 + ‖PΩu − z‖2 ≤ ‖u − z‖2, u ∈ H, z ∈ Ω. The set of fixed
points for T from Ω into H is denoted by Fix(T ), i.e., Fix(T ) := {u ∈ Ω : Tu = u}.
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Lemma 2.1 (see, [20]) Let Ω be a closed convex subset of a real Hilbert space H and
let T : Ω → Ω be a nonexpansive mapping with Fix(T ) 6= ∅. If {uk} is a sequence in
Ω weakly converging to u and if (I−T )uk converges strongly to v, then (I−T )u = v.
In particular, if v = 0, then u ∈ Fix(T ).
Lemma 2.2 (see, [21]) Let H be a real Hilbert space and {zk} a sequence in H
such that there exists a nonempty closed set Ω ⊆ H satisfying ωω(zk) ⊂ Ω and
limk→∞ ‖zk − z‖ exists for every z ∈ Ω. Then there exists z̃ ∈ Ω such that {zk}
converges weakly to z̃.

3. A string-averaging scheme for the MSSEP

Let the string J t1 = (it1, it2, · · · , itγ(Jt1)) be a finite nonempty subset of J1, for every
t = 1, 2, · · · , S1, where the length of the string J t1, denoted by γ(J t1), is the number
of elements in J t1. Put T t1 := Pit

γ(Jt1)
· · ·Pit2Pit1 , where Pitl = PC

it
l

, for l = 1, 2, · · · , γ(J t1)
and t = 1, 2, · · · , S1. Given a positive weight vector β = (β1, β2, · · · , βS1) with∑S1
t=1 βt = 1, we define the algorithmic mapping P1 := ∑S1

t=1 βtT
t
1. We suppose

that every element of J1 appears in at least one of the strings J t1. Analogously,
for the family {Qj}j∈J2 , we can construct the mapping P2 := ∑S2

t=1 ηtT
t
2 where

T t2 := Pjt
γ(Jt2)
· · ·Pjt2Pjt1 , Pjtl = PQ

jt
l

for t = 1, 2, · · · , S2, l = 1, 2, · · · , γ(J t2) and

η = (η1, η2, · · · , ηS2) is also a positive weight vector such that ∑S2
t=1 ηt = 1.

First, we need to prove the following lemma.
Lemma 3.1 z = [u, v] ∈ Γ if and only if (I − P1)u = (I − P2)v = 0 and Au = Bv.

Now, we consider a string-averaging scheme, z1 = [x1, y1], x1 ∈ H1, y
1 ∈ H2, and

xk+1 = P1(xk − γkA∗(Axk −Byk)),
yk+1 = P2(yk + γkB

∗(Axk −Byk)),
(3.1)

where γk is chosen by

γk = ρkf(xk, yk)
ak + εk

(3.2)

with ρk, f(x, y) and ak defined in (1.4) and an assumption:
(ε): {εk} is a bounded sequence of positive real numbers and has lim infk→∞ εk > 0.
Theorem 3.1 Let H1, H2 and H3 be real Hilbert spaces, let A and B be two bounded
linear mappings from H1 and H2 into H3, respectively, and let Ci and Qj be two
closed convex subsets in H1 and H2, respectively, for each i ∈ J1 and j ∈ J2. Assume
that there holds assumption (ε). Then, the sequence {zk = [xk, yk]}, defined by (3.1)
and (3.2), as k →∞, converges weakly to a solution of (1.1).

4. Numerical Examples

For computation, we consider the case H1 = E2, H2 = E3 and H3 = E4; A and B
are given bellow.
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A =


0.1 0.2
0.2 0.4
0.3 0.6
0 0.1

 , B =


1 0 0
0 0.1 0.2
0 0.2 0.4
0 0.1 0

 .
We consider MSSEP (1.1) with Ci = {x ∈ E2 : 〈ai, x〉 ≤ βi}, where ai = (1/i;−1)
and βi = 0, for i = 1, · · · , 10, and Qj = {y ∈ E3 : ‖y − aj‖ ≤ 1}, where aj =
(1/(j+1); 1/(j+1); 1/(j+1)) for j = 1, · · · , 15. Clearly, problem (1.1) with the data
above has many solutions. So, in order to verify the convergence to a solution, that we
do not know, for algorithmic scheme (3.1)–(3.2), we use the errors: error1 := ‖xk+1−
xk‖/‖xk‖ and error2 := ‖yk+1−yk‖/‖yk‖ with ρk = 3+1/(k+1), εk = 1 for all k ≥ 1,
x1 = (−3.0; 3.0) and y1 = (−2.0;−2.5; 2.0). Put P̃1 = (PC5 · · ·PC1 + PC10 · · ·PC6)/2
and P̃2 = (PQ5 · · ·PQ1 + PQ10 · · ·PQ6 + PQ15 · · ·PQ11)/3. The numerical results with
different P1 and P2 are given in the following tables.

k error1 error2 k error1 error2
10 0.0012953412 0.0084375860 100 0.0000584719 0.0004042637
20 0.0005700299 0.0049270390 200 0.0000189949 0.0001356754
30 0.0003496738 0.0030891459 300 0.0000100827 0.0000746127
40 0.0002398504 0.0020088602 400 0.0000064987 0.0000495669
50 0.0001747594 0.0013715507 500 0.0000046404 0.0000363808

Table 1. Method (3.1)–(3.2) with P1 = ∑10
i=1 PCi/10 and P2 = ∑15

j=1 PQj/15

k error1 error2 k error1 error2
10 0.0009321189 0.0054130662 100 0.0000422591 0.0002421531
20 0.0003776241 0.0021946777 200 0.0000164338 0.0000934767
30 0.0002192796 0.0012719729 300 0.0000095113 0.0000504397
40 0.0001483827 0.000858825440 400 0.0000064435 0.0000367375
50 0.0001093893 0.000631803850 500 0.0000047357 0.0000272121

Table 2. Method (3.1)–(3.2) with P1 = PC10 · · ·PC1 and P2 = PQ15 · · ·PQ1
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